Last updated on

The vectors a\vec{a} and b\vec{b} each of magnitude xx are inclined to each other such that their resultant is equal to 3x\sqrt{3}x. Then magnitude of the resultant of a\vec{a} and b-\vec{b} is

Vector addition – analytical method
NEET
1

3x\sqrt{3}x

2

2x\sqrt{2}x

3

xx

4

3x3x

Solution:

Let the magnitude of vectors a\vec{a} and b\vec{b} be a=x|\vec{a}| = x and b=x|\vec{b}| = x.

Let θ\theta be the angle between a\vec{a} and b\vec{b}.

The magnitude of the resultant of a\vec{a} and b\vec{b} is given by the formula:

R=a2+b2+2abcosθ|\vec{R}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|\cos\theta}

We are given that R=3x|\vec{R}| = \sqrt{3}x.

Substituting the given values:

(3x)2=x2+x2+2(x)(x)cosθ(\sqrt{3}x)^2 = x^2 + x^2 + 2(x)(x)\cos\theta

3x2=2x2+2x2cosθ3x^2 = 2x^2 + 2x^2\cos\theta

Subtract 2x22x^2 from both sides:

x2=2x2cosθx^2 = 2x^2\cos\theta

Divide by 2x22x^2 (assuming x0x \neq 0):

cosθ=x22x2=12\cos\theta = \frac{x^2}{2x^2} = \frac{1}{2}

This implies that θ=60\theta = 60^\circ.

Now, we need to find the magnitude of the resultant of a\vec{a} and b-\vec{b}.

The angle between a\vec{a} and b-\vec{b} will be 180θ=18060=120180^\circ - \theta = 180^\circ - 60^\circ = 120^\circ.

Let the new resultant be R=a+(b)\vec{R}' = \vec{a} + (-\vec{b}).

The magnitude is:

R=a2+b2+2abcos(180θ)|\vec{R}'| = \sqrt{|\vec{a}|^2 + |-\vec{b}|^2 + 2|\vec{a}||-\vec{b}|\cos(180^\circ - \theta)}

Since b=b=x|-\vec{b}| = |\vec{b}| = x, we have:

R=x2+x2+2(x)(x)cos(120)|\vec{R}'| = \sqrt{x^2 + x^2 + 2(x)(x)\cos(120^\circ)}

We know that cos(120)=12\cos(120^\circ) = -\frac{1}{2}.

R=2x2+2x2(12)|\vec{R}'| = \sqrt{2x^2 + 2x^2(-\frac{1}{2})}

R=2x2x2|\vec{R}'| = \sqrt{2x^2 - x^2}

R=x2|\vec{R}'| = \sqrt{x^2}

R=x|\vec{R}'| = x

Thus, the magnitude of the resultant of a\vec{a} and b-\vec{b} is xx. This corresponds to option (3).