Last updated on

The plates of a parallel plate capacitor are separated by dd. Two slabs of different dielectric constant K1K_1 and K2K_2 with thickness 38d\frac{3}{8}d and d2\frac{d}{2}, respectively are inserted in the capacitor. Due to this, the capacitance becomes two times larger than when there is nothing between the plates.

If K1=1.25K2K_1 = 1.25 K_2, the value of K1K_1 is:

Effect of Dielectric on Capacitance
NEET 2025 PYQ
1

2.66

2

2.33

3

1.60

4

1.33

Solution:

Let the area of the plates be AA and the separation be dd. The capacitance of the parallel plate capacitor with vacuum/air between the plates is C0=ϵ0AdC_0 = \frac{\epsilon_0 A}{d}.

When two dielectric slabs are inserted, the total thickness of the dielectrics is t1=38dt_1 = \frac{3}{8}d and t2=d2t_2 = \frac{d}{2}.

The total thickness of the dielectric material is ttotal=t1+t2=38d+d2=3d+4d8=78dt_{total} = t_1 + t_2 = \frac{3}{8}d + \frac{d}{2} = \frac{3d + 4d}{8} = \frac{7}{8}d.

The remaining air gap is tair=dttotal=d78d=18dt_{air} = d - t_{total} = d - \frac{7}{8}d = \frac{1}{8}d.

The capacitance CC of a parallel plate capacitor with multiple dielectric slabs and an air gap is given by:

C=ϵ0At1K1+t2K2+tair1C = \frac{\epsilon_0 A}{\frac{t_1}{K_1} + \frac{t_2}{K_2} + \frac{t_{air}}{1}}

Substitute the given thicknesses:

C=ϵ0A3d/8K1+d/2K2+d/81C = \frac{\epsilon_0 A}{\frac{3d/8}{K_1} + \frac{d/2}{K_2} + \frac{d/8}{1}}

C=ϵ0Ad(38K1+12K2+18)C = \frac{\epsilon_0 A}{d \left( \frac{3}{8K_1} + \frac{1}{2K_2} + \frac{1}{8} \right)}

We know C0=ϵ0AdC_0 = \frac{\epsilon_0 A}{d}, so we can write:

C=C0(38K1+48K2+18)C = \frac{C_0}{\left( \frac{3}{8K_1} + \frac{4}{8K_2} + \frac{1}{8} \right)}

According to the problem, the new capacitance CC is two times larger than C0C_0, so C=2C0C = 2C_0.

2C0=C0(38K1+48K2+18)2C_0 = \frac{C_0}{\left( \frac{3}{8K_1} + \frac{4}{8K_2} + \frac{1}{8} \right)}

Dividing both sides by C0C_0:

2=1(38K1+48K2+18)2 = \frac{1}{\left( \frac{3}{8K_1} + \frac{4}{8K_2} + \frac{1}{8} \right)}

This implies:

38K1+48K2+18=12\frac{3}{8K_1} + \frac{4}{8K_2} + \frac{1}{8} = \frac{1}{2}

Multiply the entire equation by 8 to clear the denominators:

3K1+4K2+1=4\frac{3}{K_1} + \frac{4}{K_2} + 1 = 4

3K1+4K2=3\frac{3}{K_1} + \frac{4}{K_2} = 3

We are given the relation K1=1.25K2K_1 = 1.25 K_2. This can be written as K1=54K2K_1 = \frac{5}{4} K_2, or K2=45K1K_2 = \frac{4}{5} K_1.

Substitute K2K_2 in the equation:

3K1+445K1=3\frac{3}{K_1} + \frac{4}{\frac{4}{5} K_1} = 3

3K1+4×54K1=3\frac{3}{K_1} + \frac{4 \times 5}{4 K_1} = 3

3K1+5K1=3\frac{3}{K_1} + \frac{5}{K_1} = 3

8K1=3\frac{8}{K_1} = 3

K1=83K_1 = \frac{8}{3}

K12.666...K_1 \approx 2.666...

Rounding to two decimal places, K1=2.67K_1 = 2.67. The closest option is 2.66.

The final answer is 2.66\boxed{\text{2.66}}