Last updated on

At a place, the dip angle is 30° when dip circle is in geographical meridian and the dip angle is found to be 45° when the dip circle is in a plane perpendicular to the geographical meridian. The dip angle in magnetic meridian is

Introduction
NEET
1

cot1(12)^{-1}(\frac{1}{2})

2

tan1(12)^{-1}(\frac{1}{2})

3

tan1(4)^{-1}(4)

4

cot1(4)^{-1}(4)

Solution:

Let δ\delta be the true dip angle in the magnetic meridian.

Let δ1\delta_1 be the apparent dip angle in the geographical meridian, so δ1=30\delta_1 = 30^\circ.

Let δ2\delta_2 be the apparent dip angle in the plane perpendicular to the geographical meridian, so δ2=45\delta_2 = 45^\circ.

Let ϕ\phi be the angle between the geographical meridian and the magnetic meridian.

The formula for apparent dip is given by tanδ=tanδcosα\tan \delta' = \frac{\tan \delta}{\cos \alpha}, where α\alpha is the angle between the plane of the dip circle and the magnetic meridian.

  1. When the dip circle is in the geographical meridian, the angle between the geographical meridian and the magnetic meridian is ϕ\phi.

    So, tanδ1=tanδcosϕ\tan \delta_1 = \frac{\tan \delta}{\cos \phi}

    tan30=tanδcosϕ\tan 30^\circ = \frac{\tan \delta}{\cos \phi} (Equation 1)

  2. When the dip circle is in a plane perpendicular to the geographical meridian, the angle between this plane and the magnetic meridian is (90ϕ)(90^\circ - \phi).

    So, tanδ2=tanδcos(90ϕ)\tan \delta_2 = \frac{\tan \delta}{\cos (90^\circ - \phi)}

    tan45=tanδsinϕ\tan 45^\circ = \frac{\tan \delta}{\sin \phi} (since cos(90ϕ)=sinϕ\cos(90^\circ - \phi) = \sin \phi) (Equation 2)

From Equation 1: cosϕ=tanδtan30\cos \phi = \frac{\tan \delta}{\tan 30^\circ}

From Equation 2: sinϕ=tanδtan45\sin \phi = \frac{\tan \delta}{\tan 45^\circ}

Using the identity sin2ϕ+cos2ϕ=1\sin^2 \phi + \cos^2 \phi = 1:

(tanδtan45)2+(tanδtan30)2=1(\frac{\tan \delta}{\tan 45^\circ})^2 + (\frac{\tan \delta}{\tan 30^\circ})^2 = 1

tan2δ(1tan245+1tan230)=1\tan^2 \delta \left( \frac{1}{\tan^2 45^\circ} + \frac{1}{\tan^2 30^\circ} \right) = 1

We know tan45=1\tan 45^\circ = 1 and tan30=13\tan 30^\circ = \frac{1}{\sqrt{3}}.

tan2δ(112+1(1/3)2)=1\tan^2 \delta \left( \frac{1}{1^2} + \frac{1}{(1/\sqrt{3})^2} \right) = 1

tan2δ(1+11/3)=1\tan^2 \delta \left( 1 + \frac{1}{1/3} \right) = 1

tan2δ(1+3)=1\tan^2 \delta (1 + 3) = 1

4tan2δ=14 \tan^2 \delta = 1

tan2δ=14\tan^2 \delta = \frac{1}{4}

tanδ=12\tan \delta = \frac{1}{2} (Since dip angle is positive)

Therefore, the dip angle in the magnetic meridian is δ=tan1(12)\delta = \tan^{-1}(\frac{1}{2}).