Last updated on

A transistor is used in common-emitter mode in an amplifier circuit. When a signal of 20 mV is added to the base-emitter voltage, the base current changes by 20 μ\muA and collector current changes by 2 mA. The load resistance is 5 kΩ\Omega. The transconductance of the amplifier and voltage gain is respectively

Introduction
NEET
1

0.1 mho, 500

2

0.1 mho, 50

3

0.2 mho, 500

4

0.2 mho, 50

Solution:

The transconductance (gmg_m) is defined as the ratio of the change in collector current (ΔIc\Delta I_c) to the change in base-emitter voltage (ΔVbe\Delta V_{be}) for a constant collector-emitter voltage. In this case, the signal voltage added to the base-emitter voltage is ΔVbe=20 mV=20×103 V\Delta V_{be} = 20 \text{ mV} = 20 \times 10^{-3} \text{ V}. The change in collector current is ΔIc=2 mA=2×103 A\Delta I_c = 2 \text{ mA} = 2 \times 10^{-3} \text{ A}.

gm=ΔIcΔVbe=2×103 A20×103 V=220 A/V=0.1 A/V=0.1 mhog_m = \frac{\Delta I_c}{\Delta V_{be}} = \frac{2 \times 10^{-3} \text{ A}}{20 \times 10^{-3} \text{ V}} = \frac{2}{20} \text{ A/V} = 0.1 \text{ A/V} = 0.1 \text{ mho}.

The voltage gain (AvA_v) of a common-emitter amplifier is given by Av=gmRLA_v = -g_m R_L, where RLR_L is the load resistance. The magnitude of the voltage gain is Av=gmRL|A_v| = g_m R_L. The load resistance is RL=5 kΩ=5×103 ΩR_L = 5 \text{ k}\Omega = 5 \times 10^3 \text{ }\Omega.

Av=(0.1 mho)×(5×103 Ω)=(0.1 A/V)×(5000 Ω)=500|A_v| = (0.1 \text{ mho}) \times (5 \times 10^3 \text{ }\Omega) = (0.1 \text{ A/V}) \times (5000 \text{ }\Omega) = 500.

Thus, the transconductance is 0.1 mho and the voltage gain is 500.