Last updated on

A physical quantity P is related to four observations a, b, c and d as follows:

P=a3b2/cdP=a^3b^2 / c\sqrt{d}

The percentage errors of measurement in a, b, c and d are 1%, 3%, 2%, and 4% respectively. The percentage error in the quantity P is

Introduction
NEET 2025 PYQ
1

10%

2

2%

3

13%

4

15%

Solution:

The given physical quantity is P=a3b2/(cd)P = a^3b^2 / (c\sqrt{d}).

This can be written as P=a3b2c1d1/2P = a^3 b^2 c^{-1} d^{-1/2}.

For a quantity Q=xAyBzCQ = x^A y^B z^C, the maximum percentage error in Q is given by:

(ΔQ/Q)×100%=A(Δx/x)×100%+B(Δy/y)×100%+C(Δz/z)×100%(\Delta Q / Q) \times 100\% = |A| (\Delta x / x) \times 100\% + |B| (\Delta y / y) \times 100\% + |C| (\Delta z / z) \times 100\%

Applying this rule to P:

Percentage error in P =(ΔP/P)×100%= (\Delta P / P) \times 100\%

=3(Δa/a)×100%+2(Δb/b)×100%+1(Δc/c)×100%+1/2(Δd/d)×100%= |3| (\Delta a / a) \times 100\% + |2| (\Delta b / b) \times 100\% + |-1| (\Delta c / c) \times 100\% + |-1/2| (\Delta d / d) \times 100\%

Given percentage errors:

(Δa/a)×100%=1%(\Delta a / a) \times 100\% = 1\%

(Δb/b)×100%=3%(\Delta b / b) \times 100\% = 3\%

(Δc/c)×100%=2%(\Delta c / c) \times 100\% = 2\%

(Δd/d)×100%=4%(\Delta d / d) \times 100\% = 4\%

Substitute the values:

Percentage error in P =3×(1%)+2×(3%)+1×(2%)+(1/2)×(4%)= 3 \times (1\%) + 2 \times (3\%) + 1 \times (2\%) + (1/2) \times (4\%)

=3%+6%+2%+2%= 3\% + 6\% + 2\% + 2\%

=13%= 13\%

Thus, the percentage error in the quantity P is 13%.