Solution:
The given physical quantity is P=a3b2/(cd).
This can be written as P=a3b2c−1d−1/2.
For a quantity Q=xAyBzC, the maximum percentage error in Q is given by:
(ΔQ/Q)×100%=∣A∣(Δx/x)×100%+∣B∣(Δy/y)×100%+∣C∣(Δz/z)×100%
Applying this rule to P:
Percentage error in P =(ΔP/P)×100%
=∣3∣(Δa/a)×100%+∣2∣(Δb/b)×100%+∣−1∣(Δc/c)×100%+∣−1/2∣(Δd/d)×100%
Given percentage errors:
(Δa/a)×100%=1%
(Δb/b)×100%=3%
(Δc/c)×100%=2%
(Δd/d)×100%=4%
Substitute the values:
Percentage error in P =3×(1%)+2×(3%)+1×(2%)+(1/2)×(4%)
=3%+6%+2%+2%
=13%
Thus, the percentage error in the quantity P is 13%.