Last updated on

If vectors A=i^3j^+5k^\vec{A}=\hat{i}-3\hat{j}+5\hat{k} and B=7i^+2j^xk^\vec{B}=7\hat{i}+2\hat{j}-x\hat{k} are perpendicular to each other, then the value of xx is

Scalars and vectors
NEET
1

15-\frac{1}{5}

2

15\frac{1}{5}

3

32\frac{3}{2}

4

32-\frac{3}{2}

Solution:

Two vectors A\vec{A} and B\vec{B} are perpendicular to each other if their scalar (dot) product is zero, i.e., AB=0\vec{A} \cdot \vec{B} = 0.

Given vectors:

A=i^3j^+5k^\vec{A} = \hat{i} - 3\hat{j} + 5\hat{k}

B=7i^+2j^xk^\vec{B} = 7\hat{i} + 2\hat{j} - x\hat{k}

Calculate the dot product:

AB=(1)(7)+(3)(2)+(5)(x)\vec{A} \cdot \vec{B} = (1)(7) + (-3)(2) + (5)(-x)

0=765x0 = 7 - 6 - 5x

0=15x0 = 1 - 5x

5x=15x = 1

x=15x = \frac{1}{5}

Thus, the value of xx is 15\frac{1}{5}.